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Abstract  
The method of the moving data window has been widely used for tracing the 

behavior of time series on a large scale where the estimation of the central point of the 
window is based on the Method of the Least Squares (MLS). However, the ordinary MLS 
minimizes the scatter of all n squares of the deviations and it is extremely sensitive to strong 
outliers. One alternative is the Method of the Least Trimmed Squares (MLTS) of Rousseeuw 
that minimizes only the left part of the squares of the deviations, ordered increasingly, 
including at least h = n/2+1 data points. Strong outliers may be present in the right part of 
this order, but the MLTS ignores them. Thus the MLST has an asymptotic robustness of 50% 
against strong outliers in the data, while the robustness of the MLS is definitely 0%. Apart 
from that the MLS ordinary regression is derived by direct formulas with respect to the 
coefficients while the MLTS robust regression is derived by testing all the available patterns 
of possible solutions: single data points in 1D case, lines through pairs of points in 2D 
case, planes through triplets of points in 3D case, etc. The pattern that has  the shortest 
MLTS scatter is revealed as a solution. The main disadvantage of the MLTS is that in 2D, 
3D, etc. it needs huge computing time in order to check all the available patterns. It may 
take a few million – billion times longer than it takes for the calculation of the respective 
ordinary regression. This work presents (i) a simple fast algorithm for the MLTS that omits 
progressively numerous patterns and may reduce the computing time a few thousand – 
million times. It presents also (ii) the capability of the MLTS applied in processing time 
series, especially with respect to the task of tracing stellar light curves in the presence of 
flares and tracing continuum stellar spectra in the presence of many spectral lines. Here we 
deal with equally spaced time series, but the method can be applied for all cases as a 
general solution.  
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1. Smoothing by the Method of the Moving Polynomial (MMP) 
 

A time series is an ordered discrete sequence of values that are 
dependent on time or other argument. Examples of a time series are a stellar 
variability curve, a stellar spectrum, a photometric section of a galaxy 
image, an index of a geophysical activity, etc. Usually the procedures 
applied on a time series aims (i) to decompose it into a trend and short scale 
variations, or (ii) to forecast some intermediate or further values of the time 
series. In many real cases the noise contamination disturbs the time series 
and at least a preliminary smoothing for suppressing the noise is needed. 
Theory and recommendations for time series smoothing are given in many 
books [1,2,3,4],  as well as in many contemporary manual. 

A common and widely used method for suppressing the noise is 
based on the so called moving data window.  Let us define a time series  zk, 
k =1, … , n and a data window of size  w.  We suppose w is an odd number 
and 1 << w << n. Then the smoothing method works, as follows. The center 
of the data window moves along the time series step by step along the input 
time series. For every fixed position of the window, centered on the data 
point k, a numerical method uses the data in the window and estimates a 
“better” value  <zk>, corresponding to zk . In the output time series  <zk> 
replaces zk . Usually the estimation of zk is based on the Method of the Least 
Squares (MLS) and the estimation <zk> is the central value of a regression 
polynomial of a low degree p, Fp(z), describing the large scale trend of the 
window data: <zk> = Fp(zk).  In the simplest case,  p=0,  the estimation  <zk> 
is the average of the data in the window.  In other cases, a regression line, 
p=1,  a regression quadratic polynomial,  p=2, etc., are used in the sense of 
an average line, an average quadratic polynomial, etc. Let us call this 
common method “Method of the Moving Polynomial” (MMP).  

The MMP based on the MLS produces an output (a result) time 
series that has been smoothened at a scale shorter than the window size. At a 
fixed window size w, when the polynomial degree p increases, the 
smoothing effect decreases, i.e. more details stands out in the output (result) 
time series. Otherwise, at a fixed polynomial degree p, when the window 
size w increases, the smoothing effect increases too.  

In the case of equally spaced data, explored here, a significant 
simplification of the calculations of the MLS estimation of the current value 
(the central value of the window) exists: (i) the regression coefficients ahead 
the odd powered polynomial terms are definitely zero and (ii) the MLS 
procedure may be changed by convolution of the time series with 
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preliminary calculated kernel coefficients [5]. Formulas for deriving the 
coefficients in 1D and 2D cases for p=2 and p=4, as well as an application 
for smoothing of digital image of a galaxy has been published [6].  So, 
excluding the average (with p = 0) that causes too strong   smoothness, the 
simplest tracing of a complicated time series may be based on the MLS 
parabola (with p = 2):  <z> = b0 + b2.t2. 

Theoretically, the MLS is applicable over a system of statistical 
assumptions. The main of them is that the observed values of the dependent 
variable (z) are subject to errors with zero mean and a finite variance, 
common for all observations. On the contrary, if only one strong outlier is 
present among the data, the MLS is practically useless. The problem is very 
serious (i) when the number of outliers is large, e. g. 40% of the data, (ii) 
when the number of the arguments (independent variables) is larger than 
unit when the visual control is almost impossible, and (iii) in time series 
processing or image processing, when the program code should be able to 
ignore automatically numerous outliers.   

Furthermore, the MMP (based on the MLS), being a linear 
transformation of the time series, saves the “total energy” (entropy, self-
information) of the data. For this reason the strong impulses in the data 
spread and disturb the behavior of the time series at scales compatible with a 
double-sized window. The high sensitivity to impulse noise is the most 
fundamental disadvantage of the MLS. Though, the MLS is the best (i) 
when the supposed intrinsic behavior of the time series at large scales is 
simple (naturally smooth) and (ii) when the noise distribution is close to the 
normal distribution. Otherwise, a method that is robust against numerous 
strong outliers is urgently needed.   

A wide spread robust method gives an estimation of zk as the median 
of the values in the moving data window [7]. The median is a robust 
estimation of the population mean with an asymptotic robustness of 50 % 
against outliers. Again, when the window size increases, the smoothing 
effect increases too. However, the median method saves sharp edges and 
produces result time series which are jagged at the shortest scale. For these 
reasons an additional smoothing by the MMP after the median smoothing is 
recommended. Unfortunately, simple methods for building median line, 
median plane or median are not certain. 

It is very attractive to have a smoothing method that combines the 
flexibility of the MLS and the robustness of the median smoothing. 
Moreover, while the MLS estimates average means, average lines, average 
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planes, average polynomials, etc., this method has to estimate mode means, 
mode lines, mode planes, mode polynomials, etc.  

The application of the MMP presented here is based on an extremely 
robust method, described in Section 2. Because of its specific character the 
MLTS may take millions – billions times longer in respect ot the MLS and 
for this reason the MLTS is not widely spread. Therefore in Section 3 we 
present a simple fast algorithm for applying of the MLTS that may reduce 
the computing time thousands – millions of times. In Section 4 we apply the 
MMP based on the MLTS to trace the stellar light curves with flares and in 
Section 5 we apply this approach to trace the continuum in the stellar 
spectrum with many lines.     

 
2. The Method of the Least Trimmed Squares (MLTS)  

 

 The ordinary method of the least squares (MLS) is based on the 
principle of the least squares, introduced by Legendre and Gauss at the end 
of XVIII century. The MLS estimator minimizes the sum of all n squares of 
deviations. Its two most important particularities are: (i) the estimations are 
presented by formulas for direct calculation of the coefficients and their 
standard errors (advantage) and (ii) the estimations have zero robustness 
against outliers (disadvantage).  

Different improvements of the MLS, aiming robustness against 
impulse noise, are proposed in the scientific literature, but we concentrate 
on the extremely robust method based on another principle. It has been 
introduced by Peter Rousseeuw in 1984 [8] and it is known as  “Method of 
the Least Trimmed Squares” (MLTS). The principle of this method that 
changes the principle of the MLS is: the best estimation minimizes the sum 
of the left half of the squares of the  deviations ordered in an ascending 
order (ordered by the increasing),  no less then h  = n/2+1 for n data points. 

The MLTS differs very significantly from the MLS in two respects:  
(i) The estimations are not to be presented by formulas for direct calculation 
of the coefficients and the standard deviations of the coefficients. For this 
reason any estimation should be made testing numerous patterns and this 
can be extremely time-consuming; (ii) The MLS estimation has an 
asymptotic robustness of 50% against outliers. For this reason practically up 
to 40% of the outliers do not change the estimation.  Beside this, while h 
increases, the robustness of the MLTS decreases. In the case of h = n the 
estimation through the MLTS coincides with the estimation through the 
MLS. However, if  h < n/2+1, the MLTS may recognize wrongly a small 
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part of the distribution as a keeper of the mode value. In the present paper 
we explore only the number  h = n/2+1.  

The MLTS is widely discussed and illustrated by Rousseeuw & 
Leroy in 1987 [9]. Some astronomical applications have been presented as 
illustrations of the power of this method by Georgiev in 2008 [10].  

The simplest application of the MLTS is the estimation of the mode 
mean of a 1D population.  Let us take the sample zj,  j = 1, …, n into 
account. Then the MLTS works, as follows. 

 
0. It takes into consideration consequently each value zj, regarding it 

as a possible mode estimation.  (The number of all checked points is N = n.) 
 
1. It derives for every zj all the n squares of the deviations Δzjk

2 =   
= (zj – zk)2,  k = 1,… , n.  

 
2. It sorts the values Δzjk

2 increasingly and trims the first h= n/2+1 of 
them, ignoring the others.  

 
3. It calculates the sum Sj of the trimmed squares of deviations and 

uses this sum as a label of the goodness of the data zj as an estimation of the 
sample mean value;   

 
4. It announces the value of zj. which has the shortest sum Sj to be 

the estimation of the mode of the 1D population;  
 
5. It announces the value s = 2×[Sj/(h-1)]1/2  as an estimation of the 

standard deviation of the population.  Multiplying by 2 is necessary for 
compatibility with the standard deviation estimation, that is based on half 
the deviations, with such an estimation by the MLS, that is based on all the 
deviations.  

 

Figure 1 show an example composed of 138 measurements of the 
atmosphere extinction of the Rozhen NAO with a standard error of a single 
value of about 0.01 mag (about 1%) (courtesy of  Dimitrov [11]; see for 
details Fig. 5 in [10]). Three estimations of the population mean are shown 
as average, median and mode. Note that the derivation of the MLTS mode is 
based on a cleat mathematical principle and it does not need a histogram 
presentation of the data. 
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Fig. 1. Comparison of the positions MLTS mode, median and MLS average on a 
random value with a heavy right tail: atmosphere B-extinction over the Rozhen 

NAO. The mode estimation by the MLTS does not need visual (histogram) 
presentation of the data 

 
Further, searching for the mode in 2D, 3D, etc., discrete 

distributions, MLTS checks every point (vector)  rj , as  a possible mode 
estimation in 2D, 3D, etc. space. MLTS applies the same scheme, as in the 
1D case, using the respective squares of deviations  Δrjk

2 =  |rj – rk|2,  k =1,… 
, n;  The number of the checks in these applications is always N = n. 

The MLTS is designed mainly to derive the robust (mode) regression 
line <z> = b0  + b1.t. In this case MLTS checks the lines through all pairs of 
points as a possible solution:   

 

0. It derives the parameters b0 and b1 of the line z = b0  + b1.t 
through every pair of points.  

The number of checked pairs (combinations)  is N = n.(n-1)/2. 
 

1. It derives all n squares of deviations  Δzjk
2 (for each pint k, k=1,…, 

n, of the sample) with respect to every checked line j,  j=1, …, N.  
 Furthermore the MLTS follows the steps 2 – 5 in the previous 
example and derives the line that is best among the available line patterns.  

Searching for 2nd degree (mode) regression curve (or mode 
regression plane <z> = a.x + b.y + c), the MLTS follows the same scheme, 
checking every triad of points. Than the number of combinations is N= n.(n-
1).(n-2)/6.  In the case of 3 arguments MLTS checks every four points and 
the number of the combinations is N =  n.(n-1).(n-2).(n-3)/24, etc. 

In this work we show applications of fitting or smoothing of time 
series or data rows using four kinds of low degree polynomials:  

 
(2.1a)    <z> = b0 + b1.t 
(2.1b)    <z> = b0 + b2.t2

(2.2)      <z> = b0 + b1.t + b2.t2   
(2.3)      <z> = b0 + b1.t + b2.t2+ b3.t3
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Figure 2 shows examples with light curves (LCs) of the variable 
stars V 425 Cas and KR Aur that contain irregular fast light variations 
(flickering). The LC are obtained with the 2 m telescope of the Rozhen 
NAO, [12] and [13], with 162 and 64 data points, respectively . The levels 
of the MLS average, median and MLTS, as well as the regression 
polynomials of 2nd and 3rd degree, derived by the MLS and MLTS, fit all 
data.  

In Fig.2a the general trend of the data follows the shape of a 2nd 
degree polynomial. By this reason both polynomials of the type (2.2) are 
closely situated. In this case the MLTS does not show some advantages. 
However, in Fig.2b the general (calm) trend follows an approximately 
horizontal line and both 3rd degree polynomials of the type (2.3) are 
essentially different. The MLS polynomial is deviated by a large flare, while 
the MLTS polynomial recognizes and elucidates the horizontal trend,   
ignoring the flare. In this case the MLTS shows clearly its robustness against 
outliers.  
 

 
 

Fig. 2. Fitting of light curves of flickering stars with comparison of the MLTS 
mode, median and MLS average (horizontal lines), as well as of polynomial curves 
of 2nd degree (2.2) in the case a and 3rd degree (2.3) in the case b. In the case b The 

MLTS mode line or the MLTS 3rd degree polynomial may be used for detach of a 
residual curve and an estimation of the energy of the flares 

 
3. Simple fast method for the application of the MMP though 
MLTS 

 

Searching for the best polynomial, the MLTS must check a large 
number of combinations. This number increases fast with the increase in the 
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polynomial degree: N ~ n2 for the 1st degree (2.1a) or (2.1b),  N ~ n3 for the  
2nd  degree (2.2),  N ~ n4 for the  3rd  degree  (2.3) etc.  That is why the 
building of 3rd degree polynomial by the MLTS over 100 points needs to test 
≈15.7 × 106 combinations, but over 1000 points it needs to check 44.2×109 
combinations  (Fig.3a, upper dashed line). Such tasks may take decades of 
computation time.  

However, such a consecutive test of millions – billions combinations 
is not necessary. The practice shows that the number of the combinations 
that have to be checked in order to obtain an optimal result may be reduced 
thousands – millions times. In particular, a random number generator may 
be used to trim a high enough number of arbitrary combinations, but the 
simplest way is omitting numerous combinations, by attributing smaller 
importance to them. The simple fast method, described below, is based on 
omitting the neighboring combinations and it needs data that is preliminary 
sorted in an ascending order by argument t. When the number of arguments 
is larger than one, the data must be sorted in an ascending order by the first 
argument, and if need by the second, etc., arguments. 

Let us concentrate on the simplest case (2.1a) or (2.1b) with a full 
number of combinations (pairs of points) N = n(n-1)/2. All such 
combinations may be counted and tested by the following C-code   

 
(3.1)    N=0;   for (i=0;  i<n-1; i++) for (j=i+1;  j<n; j++) {  N++;   

/* Here is the place of the code that tests and labels the line patterns */  } 
 
However, the neighboring pairs of points, numbered as  (i,j), like 

(0,1) (1,2), (2,3),  etc., (0,2), (2,4), (4,6), etc., or, generally, (0,0+m), (0+ m, 
0+2 m), (0+2m, 0+3m), etc., may be omitted as close neighbors and less 
useful. Generally, beginning with the point numbered 0 and using only the 
pairs of points that have difference divisible bay m between their numbers, 
we may thin out the number of combinations about m2 times. We could use 
all the points, testing also for the cases (k, k +m), (k + m, k +2 m), (k +2m, 
+3m), etc., for k =0,…,m, i.e, about m more times . So, such thin out 
procedure must be applied by the C-code       
 
(3.2)    M=0;  for (k=0;  k<m; k++) for (i=k;  i<n-m; i+=m) for (j=i+m;  j<n;   

j+=m) { M++;  
            /*  The code that tests and labels the line patterns must be written here  */  } 
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Here M is the number of the used combinations. Thus the reduction 
gain becomes (N/M) ~ m in the case of (2.1a) or (2.1b),  (N/M) ~ m2 in the 
case of (2.2) and (N/M)  ~ m3 in  the case of (2.3).  
 For example, in the case of n = 13 points, numbered as 0, 1, 2, …, 
12, p=1 and m = 1,we have to check the full number of combinations, N = 
78. However, if we use m = 3, we have to check M ≈ N/3 combinations. 
Really in respect to (3.2) the combinations are 21. These combinations are 
shown in Fig. 3. 

 

 
 

Fig. 3. Inventory of the combination used with applying of the fast method for 
MLTS regression line (p = 1) on n=13 points with thin out step m =3. The number 

of these “good” combinations is M =21, while the number  
of all combinations is N = 78 

 
 Here we present a method for automatic progressive increase of the 
thin out step m in dependence on n. The increasing is shown in Fig.4a. The 
user must supply a suitable supporting number, f.e. n0 = 21. In that case, if n 
≤ n0, the computer program will use all combinations, corresponding to n, as 
in the general case (3.1), with m = 1. If the number of points in the current 
application of the MLTS occurs n > n0, a suitable thin out step of m > 1 will 
be derived and used, so that it reduces the number of the used combination 
as in (3.2). 
 The C-code, given below, shows the automatic derivation of m, in 
dependence of n and a supporting number supplied by a user n0 , with a 
respective number of combinations N0, derived by (3.1).  This code 
increases the thin out step m (Fig. 4a) and defines the number of checked 
combinations M to be more and more large than N0, but with enough slow 
increasing (Fig.4,b, thick graphs). 
 

   /* Here is the part of the program that calculates N0 from n0 though 
(3.1)  */ 
(3.3)      M=0;   m=1;   if(n>n0) {   

 N=(n0-1)*n0/2.;   for (l=n0;  l<=n; l+=2)  {   
 M=0;  for (k=0; k<=m; k++)  for (i=k; i<l-nd; i+=k)   for (j=i+k; j<l;   

j+=k) { M++; 
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            if (M>N0 && l/k>2) { N0=M; m++; }      }     }   
 

The result is the thin out step m that will be used for C-code (3.2), as 
well as the preliminary derived number M of the combinations to be used. In 
this approach the thin out step m increases slowly but progressively with the 
increasing number of points n. The reduction gain N/M increases rapidly.  

Figure43a shows the increasing of the thin out step m number in 
dependence on n, after the code (3.3). Figure 4b presents the slow increase 
of the used combinations M  (thick jagged curves) and the fast increase in 
gain (N/M) (jagged curves at the bottom down corner).  

In the examples given in Fig.4 the user-supplied supporting number 
n0, that starts the increase of m and the increase of N/M, is 75, 32 and 22, 
respectively. There in the case of n=1000 points the thin out step tends to 
m=100 (Fig.4a). In the same time in the cases of polynomials of 1st, 2nd and 
3rd degree the gain N/M is about 100, 3000 and 110 000 times, respectively 
(Fig. 4b).    

 

 
 

Fig. 4. a.  Increasing of the thin out step m in dependence on the data number n 
and user supplied beginning number n0, where the numbers 1, 2 and 3 correspond 
to the models (2.1), (2.2) and (2.3). b. Increasing of the full combination number N 

(dashed lines), used number of combinations M (thick graphs) the gain N/M 
(graphs in the right-down corner) in dependence on n.  The numbers correspond, 

as in a, to polynomials of 1st (1), 2nd (2) or 3rd (3) degree 
 
Figure 4 shows that the proposed fast method, based on omitting of 

combinations, makes the MLTS and the MMP based on the MLTS really 
useable. Some applications are given below.   
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Fig. 5. a. Results of tracing of a light curve of the cataclysmic star KR Aur  by 
various methods, signed in the picture. In the cases 2 and 4 the regression curve 

over all points is build. In the other 3 cases different smoothing methods with 
window size 71 pix (points)  are used; b. Residual light curve with respect to the 

MMP smoothing by the MLTS (2.3) in a. (thick curve) 
 
4. Tracing a large scale trend in stellar light curves with 
flickering  

 

The flickering of symbiotic and cataclysmic stars produces 
complicated light curves where both large scale trends and short scale 
variations are of astrophysical interest.  

Figure 5a shows a light curve (LC) of the cataclysmic variable KR 
Aur with 148 points (60 cm telescope of the Belogradchik AO, [13]). A 
significant sink of a 2-fold light decrease and duration of about 15 min 
dominates in the LC. The general behavior of the LC is fitted by a 2nd 
degree polynomial  (2.2) through the MLS and through the MLTS. Note that 
the MLS polynomial is affected by the sink of the LC and it has a concave 
curve, but the MLTS polynomial ignores the sink and shows a more realistic 
convex curve. The LC is also smoothed by the MMP with a window size 71 
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pix (points) through the MLS (2.1b), as well as through the MLTS (2.2) and 
MLTS (2.3). (For visualizing of the jaggedness of the MLTS result 
additional smoothing by the MLS has not been applied.)  

The last mentioned smoothing may be considered the best and useful 
for deriving the “energy” of the sink: Figure 5b shows the residual LC with 
respect to the MMP, made though the MLTS (2.3). 

 

 
 

Fig. 6 a: Results of smoothing of the LC of a strong and continuous outburst of EV 
Lac with a window of 55 pix (points) by 2 methods, signed in the picture.   

b. Residual LC with respect to the MMP smoothing by the MLTS (2.3) 
 
Figure 6a represents the LC with 600 points of a remarkable power 

outburst of the active red dwarf star EV Lac (60 cm telescope of the Rozhen 
NAO, [14]). The general photometric behavior of the outburst is presented 
by smoothing with a window size of 55 points (275 min) by use of the MLS 
and the MLTS of type (2.1b).  Note that the MLS smoothens and spreads the 
local short outbursts, while the MLTS ignores them.  

Figure 6b shows that the residual LC with respect to MLTS is 
smoothened. (Additional LMS smoothing of the MLTS smooth is not 
applied). The residual LC elucidates clearly at least three well pronounced 
short time outbursts with a duration of 100 – 200 min. The applied MLTS 
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method gives possibility for deriving the energy of the main outburst as well 
as the energy of the flickering outbursts. 

  
5.  Tracing the spectral continuum among many spectral lines  
 

The deriving of the continuum of a stellar spectrum containing 
numerous spectral lines is an important and difficult task. The MMP based 
on the MLTS gives a reasonable solution.  

Figure 7a presents a part of the spectrum of the AM star HD 033254 
through 900 data  points with a step of 0.1 Ǻ (2 m telescope of the Rozhen 
NAO [15]).  The continuum seems to be linear and the regression line, build 
by the MLTS (2.1b), confirms clearly this impression. The respective LTS 
regression line is deviated down by the absorption spectral lines and it is 
useless. Furthermore, the smoothening by a window size of 71 pix (points) 
through the polynomial (2.1b) is applied by MLS and MLTS. The MLS 
curve twists accounting for the intensities of the lines, but the MLTS curve 
follows confidently the line of the continuum. 
 

 
 

Fig. 7. a: Results of processing of a spectrum of the Am star HD 033254 by various 
methods, signed in the picture. In 2 cases, signed by “full”, a regression line over 

all points is built. In the rest cases smoothing window size of 71 pix (7.1 A) is 
applied; b. Residual light curve with respect to the MMP smoothing by the MLTS 

(2.1b) 
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Figure 7b shows the residual spectrum with respect to the MLTS 
smooth and the equivalent widths of the spectral lines may be easy derived.   

Figure 8 shows the central part of the spectrum, given in Fig.7. 
Smoothing with 2 different window sizes is applied and the results are 
practically identical. These examples show that the window size is not too 
crucial.   

 

 
 

Fig. 8. Smoothing of the central part of the spectrum of HD 033254, given in 
Fig.7a by the MMP (2.1b) through MLS (dashed curve) or MLTS (thick curve) with 
a window of 51 pix or 91 pix. In both cases the MLTS (2.1b) follows the majority of 

the points, which are placed in the band of the continuum 
 
Figure 9 shows an attempt for tracing the continuum in the 

complicated spectrum of the star HD 178449 with 900 points (2 m telescope 
of the Rozhen NAO, [15]). A MMP smoothing with a window size of 401 
pix is applied through the MLS or MLTS. The MLS polynomial follows the 
middle part of the band of the data. On the contrary, the MLTS attempts to 
find and to follow the trend of some majority of points. This attempt is 
about to be successful up to 6000 A, but the right tail of the data is too short 
and the derived trend occurs broken. Essentially, this attempt for tracing 
some spectral continuum is not successful.  
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Fig. 9. Results of smoothing the spectrum of the star HD 178449 by application of 

a very large window of 401 pix (points). The right edge of the MLTS curve is 
broken because the spectrum is complicated and short 

 
 Figure 9 shows the significant difference between the results of 
MMP smoothing by the MLS or by the MLTS. It elucidates also the fact that 
the result of the MLTS smoothing cannot be easily predicted.  

In the end, note that in the last example the computing time for the 
MLTS smoothening by means of the C-code (3.2) with the implementation 
of the algorithm (3.3) took about 10 min (roughly one second per data 
point), while when applying of the direct method (3.1) only the computing 
time should be about 100 times larger.  

 
Conclusion 

 

The main known advantage of the MLTS (Rousseeuw, 1984;  
Rousseeuw &, Leroy, 1987)  in comparison with the MLS is its extremely 
high robustness with respect to outliers. Really the MLTS is able to ignore 
up to about 40% of the data, providing with a “mode” regression model. 
However, this method is not widely spread even when strong outliers are 
present because of its extremely high time consumption.  This is 
understandable. When the data amount is not large, the user is able to reject 
the outliers that cannot be taken into consideration and to apply the ordinary 
MLS. However, in the case of many outliers or of many consecutive 
applications of a chosen regression model in the presence of outliers, the 
MLTS may be recommended. Apart from the examples given here, the 
MLTS may be useful in image processing and galaxy photometry.  
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We must note that we call the MLTS estimation to be “mode” but it 
is not just the mode, it must be slightly shifted toward the ignored large 
deviations. We consider this shift is very small.   
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РОБАСТО ИЗГЛАЖДАНЕ НА РЕДОВЕ ОТ ДАННИ ЧРЕЗ ПРОСТ 
БЪРЗ АЛГОРИТЪМ. ПРЕКАРВАНЕ НА ТРЕНДА ПРИ ЗВЕЗДЕН 

ФЛИКЕРИНГ И КОНТИНУУМ ПРИ ЗВЕЗДЕН СПЕКТЪР 
 

Цв. Георгиев 
 

Резюме 
Методът на движещия се прозорец от данни се използва широко 

при трасиране на едромащабното поведение на времеви редове, като 
оценката на централната точка на прозореца се базира на Метода на 
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най-малките квадрати (МНК). Обаче, обичайният МНК минимизира 
разсейването на всичките n квадрати на отклонения и затова е 
екстремално чувствителен към силно отклоняващи се данни. Една 
алтернатива е Методът на отбраните най-малки квадрати (МОНК) на 
Русю. Той минимизира само лявата част на квадратите на 
отклоненията, наредени по нарастване, включвайки поне h = n/2+1 
данни. В дясната част на наредените квадрати на отклоненията може да 
присъстват произволно големи квадрати на отклонения, но МОНК ги 
игнорира. Така МОНК има асимптотична 50 % робастност спрямо 
силно отклоняващи се данни, докато робастността на МНК е 
определено 0 %. Обаче, докато коефициентите на обичайната МНК 
регресия се изчисляват чрез аналитично изведени формули, при МОНК 
това става чрез тестване на достъпни образци на възможни решения. 
Такива са: В едномерния случай – всяка данна; В двумерния случай – 
правата през всяка двойка точки; В тримерния случай – равнината през 
всяка тройка точки и т.н. Образецът, който има най-малко МОНК-
разсейване се избира за решение. Главният недостатък на МОНК е, че в 
2D, 3D и т.н. случаи той се нуждае от огромно изчислително време за 
да провери всички достъпни образци. Това може да отнеме милион- 
милиард пъти повече компютърно време отколкото времето за 
изчисляване на обичайна регресия. В гази работа е представен (i) прост 
бърз алгоритъм, който пропуска съседни комбинации с прогресивно 
увеличаваща се стъпка и може да редуцира изчислителното време 
хиляда – милион пъти. Представени са и (ii) възможностите на МОНК 
при изглаждане на редове от данни в два примера – за трасиране на 
кривата на блясъка на звезда в присъствието на избухвания и за 
прекарване на континуума на звезден спектър в присъствието на 
множество спектрални линии. Тук се имат предвид еквидистантни 
редове от данни но методът е приложим във всички случаи.   
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